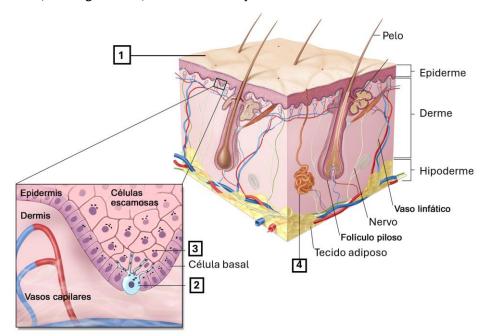
VEST UVV-ES

2026 | 1

PROVA DISCURSIVA E DE REDAÇÃO CURSO DE MEDICINA (SEGUNDA ETAPA)

- LEIA ATENTAMENTE AS SEGUINTES INSTRUÇÕES:
- 1. Por gentileza, abra este caderno de provas somente quando autorizado(a).
- 2. Antes do início da prova, confira os dados de sua inscrição nas folhas de respostas. Constatando erro, comunique-se com o fiscal.
- 3. Este caderno contém questões discursivas de Biologia e Química e 1 tema de redação.
- 4. Responda a cada questão somente no espaço indicado nas folhas de respostas.
- **5.** Fique atento ao preenchimento das folhas de respostas, pois, havendo erro de transcrição, isto é, questões de Biologia respondidas no cartão de Química ou viceversa, as respostas NÃO serão consideradas.
- 6. Não dispomos de outras folhas de respostas para substituição, portanto fique atento.
- 7. Não é permitido o uso de lápis, lapiseira nem borracha. Utilize apenas caneta esferográfica de tinta azul ou preta.
- 8. Ao término do processo seletivo, os(as) candidatos(as) podem levar o caderno de provas.
- 9. As instruções contidas nesta capa constituem normas que deverão ser respeitadas, sob pena de eliminação do candidato(a).
- 10. Na dúvida, consulte o fiscal de sala.

ROTEIRO DA PROVA DISCURSIVA:


- Analise os itens das questões apresentadas;
- Utilize os espaços disponíveis para resposta deste caderno como rascunho;
- Transcreva o conteúdo do rascunho para a folha de respostas, mantendo a mesma ordem e padrão aqui expostos.

BIOLOGIA

QUESTÃO 01 – DISCURSIVA (3,0 pontos)

No verão, idosos são mais vulneráveis aos efeitos do calor, como desidratação e hipertermia, devido à dificuldade em regular a temperatura corporal e à menor capacidade de transpiração. Em dias quentes, a pele atua como uma barreira protetora e participa ativamente da regulação da temperatura corporal.

A figura a seguir mostra as principais camadas da pele humana: epiderme, derme e hipoderme, além de estruturas associadas, como glândulas, vasos e terminações nervosas.

Com base na imagem e nos seus conhecimentos sobre a histologia e fisiologia da pele, responda:

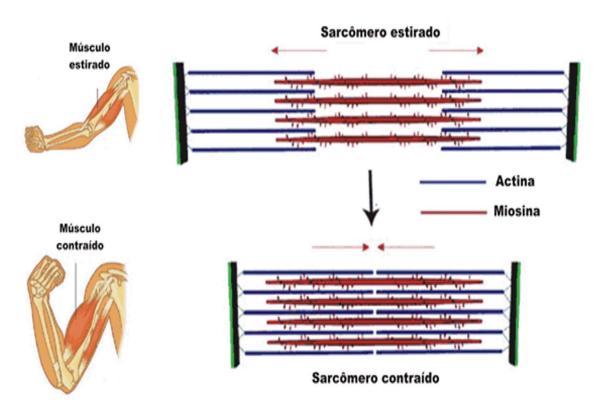
Item a (1 ponto)

Qual é o tipo de tecido epitelial (1) que constitui a epiderme, responsável por formar uma barreira contra agressões externas?

Item b (1 ponto)

Qual é a célula da epiderme (2) responsável pela produção do pigmento (3) que protege contra os raios ultravioleta?

Item c (1 ponto)


Qual estrutura presente na derme (4) participa diretamente do processo de termorregulação durante o exercício?

RASCUNHO DA RESPOSTA		

QUESTÃO 02 – DISCURSIVA (3,0 pontos)

Durante uma corrida de alta intensidade, como uma prova de 100 metros rasos, os músculos esqueléticos dos atletas realizam contrações rápidas e coordenadas.

A figura a seguir mostra uma comparação entre o sarcômero de uma fibra muscular esquelética em repouso e após a contração, destacando a aproximação das linhas Z e o encurtamento da banda I.

Com base nessa imagem e nos conhecimentos sobre a fisiologia da contração muscular, responda:

Item a (1 ponto)

Qual é a organela presente nas fibras musculares esqueléticas, responsável por liberar o sinal químico que promove a contração?

Item b (1 ponto)

Qual é o íon essencial liberado por essa organela para iniciar a contração?

Item c (1 ponto)

Qual proteína presente no complexo regulador da actina se liga a esse íon, permitindo o deslizamento dos filamentos finos sobre os espessos?

RASCUNHO DA RESPOSTA			

QUESTÃO 03 – DISCURSIVA (3,0 pontos)

"Sangue artificial, desenvolvido a partir de células-tronco, é testado em humanos pela primeira vez no Reino Unido". Porém, cientistas brasileiros destacam que esse é um projeto bem futurista e que as hemácias devem ter capacidade de se alterar morfologicamente para atravessar vasos sanguíneos estreitos. O sangue artificial seria destinado a um público bem específico, como por exemplo, pessoas portadoras de anemia falciforme.

Lopes, Sônia; Rosso, Sergio. **Manual do Professor**. São Paulo: Saraiva Didático, Vol 3, 2016; Silva Junior, César da; Sasson, Sezar; Caldini Junior, Nelson. **Biologia** 6. ed. São Paulo: Saraiva, 2015. Folha de S. Paulo, 21/06/2025. (Adaptado).

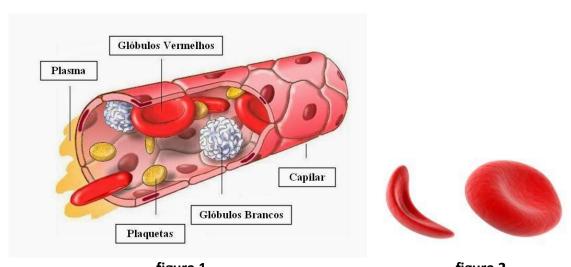


figura 1 figura 2

A figura 1 apresenta um capilar com os elementos figurados do sangue, e a figura 2, a anemia falciforme. Pergunta-se:

Figuras disponíveis em: https://br.images.search.yahoo.com. Acesso em: 10/07/2025.

Item a (1 ponto)

Qual o principal componente da hemácia e qual sua função?

Item b (1 ponto)

Quais as principais características da anemia falciforme?

Item c (1 ponto)

Qual é a causa hereditária da anemia falciforme?

RASCUNHO DA RESPOSTA		

QUESTÃO 04 – DISCURSIVA (3,0 pontos)

"Futuro da Medicina à vista". Um grupo de cientistas utilizou a técnica CRISPR para remover cromossomo extra de células de pele e estaminais de portadores da síndrome de Down, cultivadas em laboratório, sem danificar os cromossomos restantes. Essa é a primeira vez que pesquisadores demonstraram a possibilidade de corrigir anomalias genéticas, o que possibilita tratamentos futuros para distúrbios relacionados à trissomia ou aneuploidia.

Lopes, Sônia; Rosso, Sergio. Manual do Professor. São Paulo: Saraiva Didático, 2016. (Adaptado).

figura 01

figura 02

Figuras disponíveis em: https://br.images.search.yahoo.com. Acesso em: 10/07/2025.

A reportagem revela os avanços da ciência e a importância dos resultados, ainda que embrionários, para o futuro das crianças afetadas pelas síndromes genéticas.

Considerando o exposto, pergunta-se:

Item a (1 ponto)

O que são aneuploidias?

Item b (1 ponto)

Por que ocorrem a formação de gametas com número anormal de cromossomos?

Item c (1 ponto)

Além da síndrome de Down, outras duas síndromes importantes são: a de Edwards (figura. 01) e de Patau (figura 02).

Nesses casos, quais cromossomos são afetados?

QUESTÃO 05 – DISCURSIVA (3,0 pontos)

No Brasil, na década de 1940, a malária era responsável por milhões de casos e muitas mortes que ocorriam em todo o país. Entretanto, nos dias atuais, a transmissão da doença ocorre, em sua maioria, na região Amazônica. Segundo o Programa Global da Malária, o objetivo é eliminar a transmissão da doença até 2035. Somente a picada da fêmea do mosquito do gênero *Anopheles* transmite a doença, pois depende de sangue para o desenvolvimento de seus óvulos.

Lopes, Sônia; Rosso, Sergio. Manual do Professor. São Paulo: Saraiva Didático, Vol. 3, 2016; Folha de S. Paulo, 21/06/2025. (Adaptado).

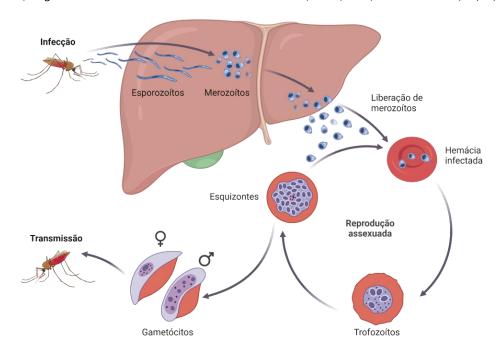


Figura disponível em: https://br.images.search.yahoo.com. Acesso em: 20/06/2025.

Considere a figura e informações sobre os apicomplexos ou esporozoários, parasitas sem estrutura para locomoção representado pelo *Plasmodium* e responda as questões:

Item a (1 ponto)

Quais são os três tipos de Plasmodium existentes no Brasil?

Item b (1 ponto)

O que define a Esporogonia?

Item c (1 ponto)

Quais são os hospedeiros intermediário e definitivo do parasita?

ROTEIRO DA PROVA DISCURSIVA:

- Analise os itens das questões apresentadas;
- Utilize os espaços disponíveis para resposta deste caderno como rascunho;
- Transcreva o conteúdo do rascunho para a folha de respostas, mantendo a mesma ordem e padrão aqui expostos.

QUÍMICA

QUESTÃO 01 – DISCURSIVA (3,0 pontos)

O sulfato de magnésio é um sal amplamente utilizado na medicina, especialmente em casos de pré-eclâmpsia, para reduzir o risco de convulsões em gestantes. Em laboratório, ele pode ser preparado por meio da reação entre o ácido sulfúrico e o hidróxido de magnésio, conforme a seguinte equação química:

$$H_2SO_4 + Mg(OH)_2 \longrightarrow MgSO_4 + 2 H_2O$$

Um técnico de laboratório reagiu 100 mL de ácido sulfúrico 2,0 mol/L com 5,8 g de hidróxido de magnésio. Após a reação, foram obtidos 6,0 g de sulfato de magnésio.

Com base nos dados e na reação apresentada no enunciado, responda:

Item a (1 ponto)

Identifique o reagente limitante, justificando com cálculos.

Item b (1 ponto)

Calcule a massa teórica, em gramas, de sulfato de magnésio que poderia ser formada a partir dos reagentes.

Item c (1 ponto)

Determine o rendimento percentual (% m/m) da reação com base na massa obtida.

RASCUNHO DA RESPOSTA		

QUESTÃO 02 – DISCURSIVA (3,0 pontos)

Em ambientes hospitalares, o peróxido de hidrogênio é amplamente utilizado como agente esterilizante, devido à sua capacidade de liberar gás oxigênio, que atua na destruição de microrganismos por oxidação. Essa decomposição pode ser acelerada por calor ou por catalisadores, como a catalase, uma enzima encontrada em tecidos vivos ou certos metais presentes em superfícies hospitalares.

A reação que representa a decomposição do peróxido de hidrogênio é:

$$H_2O_{2(aq)} \rightarrow H_2O_{(l)} + \frac{1}{2}O_{2(g)}$$

Com o objetivo de monitorar a eficiência do processo de decomposição catalisada, técnicos de laboratório realizaram um experimento controlado em que mediram o volume de oxigênio, produzido ao longo do tempo, a uma determinada temperatura.

Os dados obtidos estão registrados na tabela abaixo:

Tempo (s)	Volume de O ₂ (mL)
0	0
20	10
40	18
60	24

Com base nos dados e conhecimentos de cinética química:

Item a (1 ponto)

Calcule a velocidade média da reação no intervalo de 0 a 60 segundos, em mL/s de gás oxigênio produzido.

Item b (1 ponto)

Explique como o catalisador influencia a velocidade da reação.

Item c (1 ponto)

Suponha que a reação seja de 1^a ordem em relação ao H_2O_2 . Se a concentração inicial era 0,40 mol/L e, após certo tempo, caiu para 0,10 mol/L, calcule o fator de diminuição da velocidade (%), considerando que a temperatura permaneceu constante.

RASCUNHO DA RESPOSTA		

QUESTÃO 03 – DISCURSIVA (3,0 pontos)

Uma empresa metalúrgica está avaliando a viabilidade de utilizar uma célula eletroquímica para a recuperação de metais em resíduos industriais. No processo, pretende-se montar uma célula galvânica para gerar energia elétrica a partir da reação entre íons metálicos presentes em efluentes. Para o experimento piloto, utiliza-se um eletrodo de ferro imerso em uma solução contendo íons Fe³⁺ e um eletrodo de prata imerso em solução de Ag⁺.

As semirreações de redução padrão envolvidas no processo são:

Fe³⁺ + 3e⁻
$$\rightarrow$$
 Fe_(s) E° = -0,04 V
Ag⁺ + e⁻ \rightarrow Ag_(s) E° = +0,80 V

Com base nessas informações:

Item a (1 ponto)

Determine qual metal atua como ânodo e qual atua como cátodo na célula e mencione qual processo ocorre em cada um deles.

Item b (1 ponto)

Calcule o potencial padrão da célula, E°célula.

Item c (1 ponto)

Em uma célula galvânica com potencial padrão (E°) de + 0.90 V, sabendo que a concentração de Fe³⁺ é 0.10 mol/L e a concentração de Ag⁺ é 0.50 mol/L.

Calcule o potencial da célula a 25ºC, usando a equação de Nernst (use três casas decimais na resposta).

Dados: Equação de Nernst: $E = E^{o} - 0.0592/n \cdot logQ$; log 0.8 = -0.0969.

Obs.: na letra A, será considerada apenas a resposta completa, ou seja, metal e nome do processo. Nas letras B e C, é necessário demonstrar os cálculos, caso contrário as respostas, serão desconsideradas.

RASCUNHO DA RESPOSTA			

QUESTÃO 04 – DISCURSIVA (3,0 pontos)

Gás lacrimogêneo é um termo utilizado para os compostos químicos conhecidos como agentes lacrimejantes, que, entre diversos efeitos possíveis, podem causar a irritação dos olhos, seguido de lacrimação. Por terem baixa toxicidade, são considerados armas não letais quando no combate e dispersão de manifestações. Dentre os agentes lacrimogêneos, destacam-se três: Cloroacetofenona, Ortoclorobenzilmalononitrila e Dibenzoxazepina.

Disponível em: https://brasilescola.uol.com.br. Acesso: 10/02/2024.

Considere um frasco fechado contendo os 3 gases lacrimogêneos citados, cujo comportamento é tido como de gás ideal. Sabendo que o número de mols do primeiro é o dobro do segundo, e que o número de mols do terceiro é a metade do primeiro e que a pressão total da mistura é 12 atm, pede-se:

Item a (1 ponto)

A pressão parcial de cada um dos gases da mistura gasosa.

Item b (1 ponto)

A fração molar de Dibenzoxazepina, presente na mistura.

Item c (1 ponto)

Quais compostos apresentam o fenômeno de ressonância? Que característica estrutural permite chegar a essa conclusão?

Obs.: nas letras A e B, é necessário demonstrar os cálculos, caso contrário as respostas, serão desconsideradas.

A letra C só será aceita caso a resposta esteja justificada.

QUESTÃO 05 – DISCURSIVA (3,0 pontos)

Em reações químicas que envolvem a transferência de elétrons de uma espécie para outra, o balanceamento se faz de forma a observar o processo de oxidação e redução dos reagentes. A reação entre o ácido oxálico ($H_2C_2O_4$ muito empregado para tirar manchas de ferrugem de tecidos) e o permanganato de potássio ($KMnO_4$), é um exemplo desse tipo de reação.

Disponíveis em: www.pro-analise.com.br; www.sinergiacientifica.com.br. Acesso: 10/02/2024.

A reação química desses reagentes origina dióxido de carbono, conforme a equação não balanceada: $H_2C_2O_4 + KMnO_4 \longrightarrow CO_2 + MnO + K_2O + H_2O$.

Em relação a essa equação, responda os questionamentos abaixo:

Item a (1 ponto)

Escreva a equação química balanceada entre o ácido oxálico e o permanganato de potássio.

Item b (1 ponto)

Determine quem é o agente oxidante.

Item c (1 ponto)

Suponha que 450 kg de ácido oxálico reagiram com 400 kg de permanganato, quantos mols de dióxido de carbono foram produzidos?

RASCUNHO DA RESPOSTA			

REDAÇÃO (10 pontos)

INSTRUÇÕES PARA A REDAÇÃO

A partir da leitura dos textos motivadores e com base nos conhecimentos construídos ao longo de sua formação, redija um texto dissertativo-argumentativo; na modalidade escrita formal da língua portuguesa sobre o tema: "Desafios do uso de um novo produto para alcançar o emagrecimento."

Selecione, organize e relacione, de forma coerente e coesa, argumentos e fatos para defesa de seu ponto de vista.

As correções das redações seguem os critérios previstos no edital itens 9.4, 9.5 e 9.6.

Leia, com atenção, os textos abaixo:

TEXTOS MOTIVADORES

TEXTO I

Aprovado pela Anvisa, o *MOUNJARO* é a medicação que foi criada pela farmacêutica Eli Lily, e aprovada pela Agência Nacional de Vigilância Sanitária (ANVISA). Tendo como princípio ativo a Tirzepatida, cuja medicação é injetável e deve ser aplicada semanalmente. A indicação desse remédio é para o tratamento do diabetes tipo 2, mas foi demonstrada em estudos, que ela também é extremamente relevante no contexto do emagrecimento para pacientes com obesidade. Abaixo, vamos entender melhor como funciona, os efeitos colaterais e se é melhor do que o *Ozempic*.

Além de diminuir o açúcar no sangue, essa nova medicação pode trazer um benefício no tratamento de sobrepeso, obesidade e síndrome metabólica. A perda de peso, de aproximadamente 20% do peso corporal total, ultrapassa os resultados obtidos com as medicações prévias dessa mesma classe (Semaglutida, que é o princípio ativo do Ozempic, e Liraglutida).

Através da "imitação" de dois hormônios que nosso próprio corpo produz, a tirzepatida é capaz de gerar seus efeitos terapêuticos. A medicação é análoga de dois hormônios:

- O GIP, que atua levando a liberação de insulina, o que diminui o apetite e a glicose sanguínea;
- E o GLP-1, com função de atrasar o esvaziamento gástrico, deixando a comida muito mais tempo no estômago, o que reduz o apetite consideravelmente.

Mounjaro x Ozempic: qual é melhor?

Ozempic (Semaglutida) imita apenas a ação do GLP-1, gerando diminuição do apetite e outros efeitos que entregam emagrecimento de cerca de 14-15% nos estudos. Já o Mounjaro (tirzepatida) imita a ação do mesmo hormônio (GLP-1) e ainda do GIP, o que faz com que o efeito sobre o emagrecimento seja ainda maior, de cerca de 20% do peso corporal.

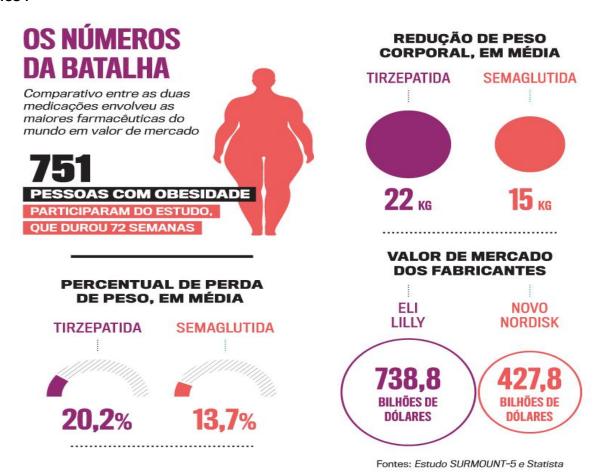
Mas há alguns efeitos colaterais e contraindicações, tais como: náuseas, vômitos e diarreia. Em pacientes que usam algumas outras medicações, é observada hipoglicemia.

Grávidas, crianças, idosos acima de 85 anos e lactantes não devem usar o medicamento.

Ninguém deve usar o medicamento sem indicação, orientação e prescrição médica. A popularização do uso indiscriminado do Ozempic, por exemplo, trouxe inúmeros problemas e efeitos indesejados, incluindo obstrução intestinal grave. Os endocrinologistas alertam que essa medicação deve ser feita com acompanhamento médico.

O médico da Nutrindo Ideais, Thomaz Baesso, especialista em emagrecimento alerta: "A venda do medicamento sem necessidade de receita médica foi o grande catalisador do uso indiscriminado e da ocorrência dos efeitos colaterais graves. Assim, vimos pessoas utilizando o Ozempic seguindo orientações de blogs e redes sociais. Tomara que esse absurdo não ocorra com a nova medicação e que a Anvisa tome as providências necessárias junto aos órgãos competentes."

Vale ressaltar que o medicamento ainda não está disponível nas farmácias e não possui preço estimado. Além disso, seu uso deve ser feito com orientação e prescrição médica e em conjunto com mudança dos hábitos de vida que incluem a prática regular de exercícios físicos e dieta.


Texto adaptado.

TEXTO II

Dados estatísticos sobre o uso do Mounjaro.

Como usá-lo? Mounjaro é administrado por via subcutânea no abdome, coxa ou braço. Deve-se alternar o local de injeção de cada dose. Administrar Mounjaro em qualquer horário do dia, independente das refeições. Quando utilizar Mounjaro com insulina, administrar como injeções separadas e nunca misturar. É possível administrar Mounjaro e insulina na mesma região do corpo, mas as injeções não devem ser próximas uma da outra. Mais informações sobre como utilizar a caneta aplicadora de uso único, ler atentamente e seguir as recomendações descritas nas instruções de uso que acompanham o medicamento.

GRÁFICO I

Disponível em: https://veja.com.br. Acesso em: 07/06/2025.

2ª Etapa de Medicina Universidade Vila Velha – ES

- Utilize o espaço disponibilizado abaixo como rascunho.
- Transcreva o conteúdo do rascunho para o cartão-resposta.
- O texto definitivo deve ser escrito à tinta azul ou preta, na folha própria, em até 30 linhas.

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	

de Química	ELEMEN
Sociedade Brasileira d	ERIÓDICA DOS
T	ELA PI

18

1,0080(2)*			H	TARF	4	DER	ÍÓ		PERIÓDICA DOS EL EMENTOS	5	LL TO	M	DE	U			2 4,0026
																	He
HIDROGÊNIO			Núm									13	14	15	16	~	뽀
6,94(6)* 4	9,0122		atômico	14	28,085*	Peso atômio	so padrão a	abreviado (Peso atômico padrão abreviado (IUPAC, 2021)**	21)**‡		5 10,81(2)*	6 12,011[2]*	7 14,007 × 8	15,999 *	18,998 10	20,180
	Be		Símbolo	1	* تن:	# Valor único, se com asterisco (mais detalhes: www.ciaaw.or.	Valor único, se com asterisco (mais detalhes: www.ciaaw.org)	isco w.org]				m	Ü	Z	O	Щ	Ne
르	BERÍLIO		Nome	-	_ 0	+ Inexistente, pois o elemento (e.g. Ra e Cif) carece de isótopos com uma distribuição isotópica	nexistente, pois o elemento (e.g. Ra e 🖒 carec de isócupos com uma distribuição isocópica	ito (e.g. Ra e tribuição isot	Cf) carece ópica			BORO	CARBONO	NITROGENIO	OXIGENIO	FLÜOR	NEONIO
1,990	22,990 12 24,305(2)*			Z Z		200000000000000000000000000000000000000			Task as naturals			13 26,982	14 28,085* 15		30,974 16 32,06(2)* 17		35,45* 18 39,95(16)*
Na	Σd			S - 117			D D D					₹	S	Д	S	Ö	Ar
SÓDIO	MAGNÉSIO	ო	4	Ŋ	9	7	Ø	6	10	11	12	ALUMÍNIO	SILÍCIO	FÓSFORO	ENXOFRE	CLORO	ARGÔNIO
39.098	20 40.078(4) 21	21 44.956 22	22 47,867 23	23 50.942 24	2 24 51,996 25		54.938 26 55.845(2) 27	27 58.933 28		58.693 29 63.546(3) 30	30 65.38(2) 31	31 69.723	32 72.630[8]	33 74.922	34 78.971(8)	74.922 34 78.971(8) 35 79.904(3)" 36 83.798(2)	36 83.798(2)
	ca	Sc	i=	>	ប៉	Z	Fe	රි	Z	Cn	Zn	Ga	Ge	As	Se	Ä	추
POTÁSSIO	CÁLCIO	ESCÂNDIO	TITÂNIO	VANÁDIO	CRÔMIO	MANGANÊS	FERRO	COBALTO	NÍGUEL	COBRE	ZINCO	GÁLIO	GERMÂNIO	ARSÊNIO	SELÊNIO	BROMO	KRIPTŌNIO
85,468 38	8 87,62 39		88,906 40 91,224(2) 41	41 92,906 42	3 42 95,95 43	43	44 101,07(2) 45	45 102.91 46	46 106,42 47	17 107,87 48	112,41 49	114,82	50 118,71 51		121,76 52 127,60(3) 53	53 126,90 54	54 131,29
윤	Š	>	Z	N	₽	٦ ۲	Bu	籽	Pd	Ag	ပ်	므	S	Sb	He	_	Xe
RUBÍDIO	ESTRÔNCIO	ITRIO	ZIRCÔNIO	NIÓBIO	MOLIBDÊNIO	TECNÉCIO	RUTÊNIO	RÓDIO	PALÁDIO	PRATA	CÁDMIO	OION	ESTANHO	ANTIMÔNIO	TELÚRIO	1000	XENÔNIO
132,91 56	6 137,33		72 178,49 73	73 180,95 74	5 74 183,84 75		186,21 76 190,23(3) 77		192,22 78 195,08(2) 79	79 196,97 80		200,59 81 204,38*	82 207,2(1,1)* 83	83 208,98 84		85	88
S	Ba	LANTANÍDIOS 57 - 71	士	Ta	≥	Re	0s	ے	꿉	Au	J	F	Pb	窗	Ъ	At	R
CÉSIO	BÁRIO		HÁFNIO	TÂNTALO	TUNGSTÊNIO	RÊNIO	ÓSMIO	IRÍDIO	PLATINA	OURO	MERCÚRIO	TÁLIO	СНОМВО	BISMUTO	POLÔNIO	ASTATO	RADÔNIO
88	8		104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
ᄯ	Ra	ACTINÍDIOS 89 - 103			(A)		@ <u> </u>			<u>D</u>	Ch	MIN				<u></u>	
FRÂNCIO	RÁDIO		RUTHERFÓRDIO	DÚBNIO	SEABÓRGIO	BÓHRIO	HÁSSIO	MEITNÉRIO	MEITNÉRIO DARMSTÁDTIO ROENTGÊNIO COPERNÍCIO	ROENTGÊNIO	COPERNÍCIO	NIHÔNIO	FLERÓVIO	MOSCÓVIO	MOSCÓVIO LIVERMÓRIO	TENNESSO	OGANESSÔNIO

Atenção: para saber como obter uma tabela periódica com muitas outras informações adicionais, acesse www.sbq.org.br/divulgacao 144,24 61 140.91 60

LUTÉCIO

ITÉRBIO

TÚLIO 101

TÉRBIO

GADOLÍNIO <u>G</u>

EURÓPIO Eu

PRASEODÍMIO NEODÍMIO PROMÉCIO SAMÁRIO

CÉRIO

Sm

P

E D

138,91 58 140,12 59

Er ÉRBIO 100

운 HÓLMIO 103

MENDELÉVIO

EINSTÊNIO

FIM

(M)

置

Pa

fone: (11) 3032-2299 copyright @ 2023 SBQ

www.sbq.org.br